

LA-UR-21-22965

Approved for public release; distribution is unlimited.

Title: Skyrmion Spin Ice in Liquid Crystals

Author(s): Duzgun, Ayhan

Nisoli, Cristiano

Intended for: Online Artificial Spin Ice Sessions 2021, 2021-03-29 (Online, New

Mexico, United States)

Issued: 2021-03-29

Skyrmion Spin Ice in Liquid Crystals

Ayhan Duzgun and Cristiano Nisoli

Los Alamos National Laboratory

Theoretical Division

Various phases of Liquid Crystals

Skyrmion stabilized by homeotropic alignment

Cholesteric

Liquid crystal skyrmions

Experimental Realization

Vectorized

LC

Ackerman et al.

Theoretical Model and simulations

$$F = \frac{1}{2} a Tr[Q^2] + \frac{1}{3} b Tr[Q^3] + \frac{1}{4} c Tr[Q^2]^2$$
 a,b,c: Thermal coefficients

$$+ \frac{1}{2}L(\partial_k Q_{ij})(\partial_k Q_{ij}) + 2q_0 L\epsilon_{lik}Q_{lj}\partial_k Q_{ij}$$

L: elastic constant q_0 : natural twist

$$-\Delta \epsilon E^2 Q_{zz} - K Q_{zz}$$

 $\Delta \epsilon E^2$: dielectric anisotropy and electric field

: vertical surface anchoring strength

- 0.6

2D skyrmion

Director profile along diameter

Walls produced by strong alignment

Characteristic
Relaxation length
180° rotation

Skyrmion-skyrmion and skyrmion-wall distance

Walls, repulsive sites, attractive sites...

Wall

Stronger

- Light
- Field
- Anchoring

Repulsive site

Stronger

- Light
- Field
- Anchoring

Attractive site

Weaker

- Light
- Field
- Anchoring

Some ways to generate repulsive and attractive regions

Binary traps for skyrmions

ARTIFICIAL SPIN ICE

Sheng Zhang et. al. *Nature* 500, p. 553–557

PARTICLE ICE

TRAP DESIGN

Binary traps for skyrmions

ARTIFICIAL SPIN ICE

Sheng Zhang et. al. *Nature* 500, p. 553–557

PARTICLE ICE

TRAP DESIGN

Binary traps for skyrmions

ARTIFICIAL SPIN ICE

Sheng Zhang et. al. *Nature* 500, p. 553–557

PARTICLE ICE

TRAP DESIGN

Ice rule

